Respuesta :
Answer:
(g o h)(9) =5
Step-by-step explanation:
Given :[tex]g(x) = 2x-1[/tex]
[tex]h(x) = \sqrt{x}[/tex]
To Find: (g o h)(9)
Solution:
[tex]g(x) = 2x-1[/tex]
[tex]h(x) = \sqrt{x}[/tex]
To find (g o f)(x)=g(h(x))
[tex]g(h(x)) = 2\sqrt{x}-1[/tex]
Now substitute x = 9
[tex]g(h(9)) = 2\sqrt{9}-1[/tex]
[tex]g(h(9)) = 2(3)-1[/tex]
[tex]g(h(9)) = 6-1[/tex]
[tex]g(h(9)) = 5/tex]
(g o h)(9) =5
Hence the value of (g o h)(9) is 5