Respuesta :
(goh) = 2(x^1/2)-1
(goh)(9) = 2(9^1/2)-1
= 2(3)-1
= 6-1
= 5
(goh)(9) = 5
(goh)(9) = 2(9^1/2)-1
= 2(3)-1
= 6-1
= 5
(goh)(9) = 5
Answer:
The [tex](goh)(9)=5[/tex]
Step-by-step explanation:
We need to find out the [tex](goh)(9)[/tex]
Given:- [tex]g(x)=2x-1[/tex] and [tex]h(x)=\sqrt{x}[/tex]
First we need to find out the composition of (gof)(x)
Replace x in function g(x) with h(x) as;
[tex](goh)(x)=2(h(x))-1[/tex]
[tex](goh)(x)=2(\sqrt{x})-1[/tex]
Now put x=9 , in above to get the [tex](goh)(9)[/tex]
[tex](goh)(9)=2(\sqrt{9})-1[/tex]
[tex](goh)(9)=2(3)-1[/tex]
[tex](goh)(9)=6-1[/tex]
[tex](goh)(9)=5[/tex]
Therefore, [tex](goh)(9)=5[/tex]