Respuesta :
[tex]\bf \qquad \qquad \textit{ratio relations}
\\\\
\begin{array}{ccccllll}
&Sides&Area&Volume\\
&-----&-----&-----\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}&\cfrac{s}{s}&\cfrac{s^2}{s^2}&\cfrac{s^3}{s^3}
\end{array} \\\\
-----------------------------\\\\
\cfrac{\textit{similar shape}}{\textit{similar shape}}\qquad \cfrac{s}{s}=\cfrac{\sqrt{s^2}}{\sqrt{s^2}}=\cfrac{\sqrt[3]{s^3}}{\sqrt[3]{s^3}}\\\\
-------------------------------\\\\
[/tex]
[tex]\bf \cfrac{smaller}{larger}\qquad \cfrac{\stackrel{height}{6}}{\stackrel{height}{12}}\implies \cfrac{1}{2}\impliedby \textit{scale factor of the pyramids}\\\\ -------------------------------\\\\ \cfrac{smaller}{larger}\qquad \cfrac{h}{h}=\cfrac{\sqrt{base}}{\sqrt{base}}\implies \cfrac{1}{2}=\sqrt{\cfrac{base}{base}}\implies \left( \cfrac{1}{2} \right)^2=\cfrac{base}{base} \\\\\\ \cfrac{1^2}{2^2}=\cfrac{base}{base}\implies \cfrac{1}{4}=\cfrac{base}{base}\\\\ -------------------------------\\\\[/tex]
[tex]\bf \cfrac{smaller}{larger}\qquad \cfrac{h}{h}=\cfrac{\sqrt[3]{volume}}{\sqrt[3]{volume}}\implies \cfrac{1}{2}=\sqrt[3]{\cfrac{volume}{volume}} \\\\\\ \left( \cfrac{1}{2} \right)^3=\cfrac{volume}{volume} \implies \cfrac{1^3}{2^3}=\cfrac{volume}{volume}\implies \cfrac{1}{8}=\cfrac{volume}{volume}\\\\ -------------------------------\\\\ \cfrac{smaller}{larger}\qquad \cfrac{1}{8}=\cfrac{\stackrel{volume}{v}}{\stackrel{volume}{400}}\implies \cfrac{1\cdot 400}{8}=v[/tex]
[tex]\bf \cfrac{smaller}{larger}\qquad \cfrac{\stackrel{height}{6}}{\stackrel{height}{12}}\implies \cfrac{1}{2}\impliedby \textit{scale factor of the pyramids}\\\\ -------------------------------\\\\ \cfrac{smaller}{larger}\qquad \cfrac{h}{h}=\cfrac{\sqrt{base}}{\sqrt{base}}\implies \cfrac{1}{2}=\sqrt{\cfrac{base}{base}}\implies \left( \cfrac{1}{2} \right)^2=\cfrac{base}{base} \\\\\\ \cfrac{1^2}{2^2}=\cfrac{base}{base}\implies \cfrac{1}{4}=\cfrac{base}{base}\\\\ -------------------------------\\\\[/tex]
[tex]\bf \cfrac{smaller}{larger}\qquad \cfrac{h}{h}=\cfrac{\sqrt[3]{volume}}{\sqrt[3]{volume}}\implies \cfrac{1}{2}=\sqrt[3]{\cfrac{volume}{volume}} \\\\\\ \left( \cfrac{1}{2} \right)^3=\cfrac{volume}{volume} \implies \cfrac{1^3}{2^3}=\cfrac{volume}{volume}\implies \cfrac{1}{8}=\cfrac{volume}{volume}\\\\ -------------------------------\\\\ \cfrac{smaller}{larger}\qquad \cfrac{1}{8}=\cfrac{\stackrel{volume}{v}}{\stackrel{volume}{400}}\implies \cfrac{1\cdot 400}{8}=v[/tex]