Respuesta :

we know that

1) The sum of the internal angles in a triangle is equal to [tex]180\°[/tex]

so

[tex]x+y+z=180\°[/tex] ---------> equation [tex]1[/tex]

2) The sum of the angle z and angle W is equal to [tex]180\°[/tex] by supplementary angles

so

[tex]z+w=180\°[/tex]

[tex]w=180\°-z[/tex] ---------> equation [tex]2[/tex]

Statements

case A. [tex]w > y[/tex]

This statement  is true

Because

[tex]w> 90\°[/tex]

[tex]y < 90\°[/tex]

so

[tex]w > y[/tex]

case B. [tex]w > x[/tex]

This statement  is true

Because

[tex]w> 90\°[/tex]

[tex]x < 90\°[/tex]

so

[tex]w > x[/tex]

case C. [tex]y+z=w[/tex] ---------> equation [tex]3[/tex]

This statement is False

Because

we know that

[tex]w=180\°-z[/tex]

substitute the value of w in the equation [tex]3[/tex]

[tex]y+z=180\°-z[/tex]

[tex]y+z+z=180\°[/tex] --------> equation [tex]4[/tex]

equate equation [tex]1[/tex] and equation [tex]4[/tex]

[tex]x+y+z=y+z+z[/tex]

[tex]x=z[/tex] ---------> not necessarily must be true

case D. [tex]x+y=z[/tex] --------> equation [tex]5[/tex]

This statement is False

Because

remember equation [tex]1[/tex]

[tex]x+y+z=180\°[/tex]

[tex]x+y=180\°-z[/tex]  --------> equation [tex]6[/tex]

equate equation [tex]6[/tex] and equation [tex]5[/tex]

[tex]z=180\°-z[/tex]

[tex]2z=180\°[/tex]

[tex]z=90\°[/tex] ---------> is not true

case E. [tex]x+y=w[/tex] ---------> equation [tex]7[/tex]

This statement is True

Because

equation [tex]1[/tex]

[tex]x+y+z=180\°[/tex]

[tex]x+y=180\°-z[/tex] --------> equation [tex]8[/tex]

remember

[tex]w=180\°-z[/tex]

substitute the value of w in the equation [tex]8[/tex]

[tex]x+y=w[/tex]

case F. [tex]z > x[/tex]

This statement  is False

Because

[tex]z < 90\°[/tex]

[tex]x < 90\°[/tex]

so

[tex]z > x[/tex] ---------> not necessarily must be true

Answer:

w>y  x+y=w  w>x

Step-by-step explanation:

Q&A Education