m∠WYX = (4x − 8)° and m∠WYZ = 10x°. If ∠WYX and ∠WYZ are complementary, find the measure of each angle.

Respuesta :

The answers would be:
WYX = 20 degrees
WYZ = 70 degrees

Answer:

[tex]m\angle WYX=20^{\circ}[/tex]

[tex]m\angle WYZ=70^{\circ}[/tex]

Step-by-step explanation:

We have been given that [tex]m\angle WYX=(4x-8)^{\circ}[/tex] and [tex]m\angle WYZ=(10x)^{\circ}[/tex].

Since ∠WYX and ∠WYZ are complementary, so they will add up-to 90 degrees.

[tex]m\angle WYZ+m\angle WYX=90^{\circ}[/tex]

Substitute the given values:

[tex]4x-8+10x=90[/tex]

Combine like terms:

[tex]14x-8=90[/tex]

[tex]14x-8+8=90+8[/tex]

[tex]14x=98[/tex]

[tex]\frac{14x}{14}=\frac{98}{14}[/tex]

[tex]x=7[/tex]

Let us substitute [tex]x=7[/tex] in measure of each angle as:

[tex]m\angle WYX=(4(7)-8)^{\circ}[/tex]

[tex]m\angle WYX=(28-8)^{\circ}[/tex]

[tex]m\angle WYX=20^{\circ}[/tex]

Therefore, the measure of angle WYX is 20 degrees.

[tex]m\angle WYZ=(10x)^{\circ}[/tex]

[tex]m\angle WYZ=(10(7))^{\circ}[/tex]

[tex]m\angle WYZ=70^{\circ}[/tex]

Therefore, the measure of angle WYZ is 70 degrees.

Q&A Education