Graph ​ y−2=−34(x−6) ​ using the point and slope given in the equation.

Use the line tool and select two points on the line.

Respuesta :

the points are at (8,0) and (0,6)

Answer:

Point-slope form: An equation of a straight line in the form [tex]y -y_1 = m(x -x_1)[/tex];  

where

m is the slope of the line and [tex](x_1, y_1)[/tex] are the coordinates of a given point on the line.

Given the equation: [tex]y-2=-\frac{3}{4}(x-6)[/tex]         ......[1]

On comparing with Point slope form equation we have;

m = [tex]-\frac{3}{4}[/tex] and point (6 , 2)

Now, find the Intercept of the given equation:

x-intercept: The graph crosses the the x-axis i.e,

Substitute y =0 in [1] and solve for x;

[tex]0-2=-\frac{3}{4}(x-6)[/tex]

[tex]-2=-\frac{3}{4}(x-6)[/tex]

Using distributive property:  [tex]a\cdot(b+c) = a\cdot b +a\cdot c[/tex]

[tex]-2 = -\frac{3}{4}x + \frac{18}{4}[/tex]

Subtract [tex]\frac{18}{4}[/tex] on both sides we get;

[tex]-2-\frac{18}{4}= -\frac{3}{4}x + \frac{18}{4} -\frac{18}{4} [/tex]

Simplify:

[tex]-\frac{26}{4} = -\frac{3}{4}x[/tex]

or

-26 = -3x

Divide both sides by -3 we get;

x = 8.667

x-intercept: (8.667, 0)

Similarly, for

y-intercept:

Substitute x = 0 in [1] and solve for y;

[tex]y-2=-\frac{3}{4}(0-6)[/tex]

[tex]y-2=\frac{18}{4}[/tex]

Add 2 on both sides we get;

[tex]y-2+2=\frac{18}{4}+2[/tex]

Simplify:

 [tex]y=\frac{26}{4} =6.5[/tex]

y-intercept: (0, 6.5)

Now, using these two points (8.667, 0) and (0, 6.5) you can plot the graph using line tool as shown below.


Ver imagen OrethaWilkison
Q&A Education