Respuesta :

Differentiate using the chain rule:

d/du [ln(u)] d/dx[2x^3+3x]

derivative of ln(u) = 1/u

1/u d/dx[2x^3+3x]

1/2x^3+3x d/dx[2x^3+3x]

Differentiate

(6x^2+3) 1/2x^3+3x

Simplify

Dy/dx = 3(2x^2+1) / x(2x^2 +3)


Answer:

[tex]\frac{(6x^2+3)}{(2x^3+3x)}[/tex]

Step-by-step explanation:

[tex]\frac{dy}{dx}[/tex] [tex]ln(x)=[/tex] [tex]\frac{1}{x}[/tex] .

Therefore:

[tex]\frac{dy}{dx}[/tex] [tex]ln(2x^{3}+3x) = \frac{1}{2x^{3}+3x} *6x^2+3[/tex]

[tex]6x^2+3[/tex] is multiplied because of the chain rule.

Q&A Education