Respuesta :
Answer : The number of carbon atoms present in isopropyl alcohol is, [tex]7.51\times 10^{23}[/tex]
Solution : Given,
Mass of isopropyl alcohol = 25 g
Molar mass of isopropyl alcohol = 60 g/mole
In isopropyl alcohol molecule, there are 3 carbon atoms and 8 hydrogen atoms and 1 oxygen atom present.
First we have to calculate the moles of isopropyl alcohol.
[tex]\text{Moles of }C_3H_8O=\frac{\text{Mass of }C_3H_8O}{\text{Molar mass of }C_3H_8O}=\frac{25g}{60g/mole}=0.416moles[/tex]
As we know that 1 mole of gas contains [tex]6.022\times 10^{23}[/tex] number of atoms
As, 1 mole of gas contains [tex]3\times 6.022\times 10^{23}[/tex] number of carbon atoms
So, 0.416 mole of gas contains [tex]0.146\times 3\times 6.022\times 10^{23}=7.51\times 10^{23}[/tex] number of carbon atoms
Therefore, the number of carbon atoms present in isopropyl alcohol is, [tex]7.51\times 10^{23}[/tex]
There are 7.53×10²³ atoms of carbon in 25 g of isopropyl alcohol C₃H₈O
We'll begin by calculating the number of mole in 25 g of C₃H₈O. This can be obtained as follow:
Mass of C₃H₈O = 25 g
Molar mass of C₃H₈O = (12×3) + (8×1) + 12
= 36 + 8 + 16 = 60 g/mol
Mole of C₃H₈O =?
Mole = mass / molar mass
Mole of C₃H₈O = 25 / 60
Mole of C₃H₈O = 0.417 mole
Next, we shall determine the number of mole of C in 0.417 mole of C₃H₈O.
1 mole of C₃H₈O contains 3 moles of C.
Therefore, 0.417 mole of C₃H₈O. Will contain = 0.417 × 3 = 1.251 moles of C.
Finally, we shall determine the number of atoms in 1.251 moles of C. this can be obtained as follow:
From Avogadro's hypothesis,
1 mole of C = 6.02×10²³ atoms
Therefore,
1.251 moles of C = 1.251 × 6.02×10²³
1.251 moles of C = 7.53×10²³ atoms
Thus, we can conclude that 25.0 g of isopropyl alcohol, C₃H₈O contains 7.53×10²³ atoms of carbon.
Learn more: https://brainly.com/question/5481456