Respuesta :

[tex]sin( \frac{5 \pi }{4}) = 0.07 [/tex] rounded to two decimal places 

If you have a scientific calculator, you can work this out by first change the setting from degree to radian

[tex]cos( \frac{5 \pi }{4}) = 0.998 [/tex] rounded to three decimal places

[tex]tan( \frac{5 \pi }{4}) = 0.069 [/tex] rounded to three decimal places

Answer:

[tex]\sin\dfrac{5\pi}{4}=-\dfrac{1}{\sqrt{2}}[/tex]  

[tex]\cos\dfrac{5\pi}{4}=-\dfrac{1}{\sqrt{2}}[/tex]  

[tex]\tan\dfrac{5\pi}{4}=1[/tex]  

Step-by-step explanation:

Given : [tex]\theta =\dfrac{5\pi}{4}[/tex]

The angle is on radian.

We need to find the sine, cosine and tangent.

[tex]\sin\theta =\sin(\frac{5\pi}{4}[/tex]

[tex]\sin\theta =\sin(\pi+\frac{\pi}{4}[/tex]

[tex]\sin\theta =-\sin(\frac{\pi}{4}[/tex]      [tex]\because \sin(\pi+\theta)=-\sin\theta[/tex]

[tex]\sin\dfrac{5\pi}{4}=-\dfrac{1}{\sqrt{2}}[/tex]  

[tex]\cos\theta =\cos(\frac{5\pi}{4}[/tex]

[tex]\cos\theta =\cos(\pi+\frac{\pi}{4}[/tex]

[tex]\cos\theta =-\cos(\frac{\pi}{4}[/tex]      [tex]\because \cos(\pi+\theta)=-\cos\theta[/tex]

[tex]\cos\dfrac{5\pi}{4}=-\dfrac{1}{\sqrt{2}}[/tex]  

[tex]\tan\theta =\tan(\frac{5\pi}{4}[/tex]

[tex]\tan\theta =\tan(\pi+\frac{\pi}{4}[/tex]

[tex]\tan\theta =\tan(\frac{\pi}{4}[/tex]      [tex]\because \tan(\pi+\theta)=\tan\theta[/tex]

[tex]\tan\dfrac{5\pi}{4}=1[/tex]  

Q&A Education