In ΔABC, m∠B = m∠C. The angle bisector of ∠B meets
AC at point H and the angle bisector of ∠C meets AB at point K. Prove that BH = CK.

Respuesta :

First, let's illustrate the problem as shown in the picture attached. Then, let's make a two-column proof:

            Statement                                                       Reason
          m∠B = m∠C                                                       Given
             AB = AC                                        Isosceles Triangle Definition
       AK=KB=AH=HC                                      Angle Bisector Postulate
        ΔBKC = ΔHBC                                        Line BC is common side
             BH = CK   Corresponding parts of congruent triangles are congruent
Ver imagen meerkat18
Q&A Education