Problem: Find the value of $x$ that maximizes $f(x) = \log (-20x + 12\sqrt{x}).$ If there is no maximum value, write "NONE".

Respuesta :

kaecie
none~!! ;o lol.

have a wonderful dayy

Answer:

The value of x is 0.09

Step-by-step explanation:

Here, the given function is,

[tex]f(x)=\log(-20x+12\sqrt{x})[/tex]

Differentiating with respect to x,

[tex]f'(x)=\frac{1}{-20x+12\sqrt{x}}(-20+\frac{12}{2\sqrt{x}})[/tex]

[tex]=\frac{-20+\frac{6}{\sqrt{x}}}{-20x+12\sqrt{x}}[/tex]

[tex]=\frac{-10+\frac{3}{\sqrt{x}}}{-10x+6\sqrt{x}}[/tex]

[tex]=\frac{-10\sqrt{x}+3}{2\sqrt{x}(-5x+3\sqrt{x})}[/tex]

Again differentiating with respect to x,

[tex]f''(x)=-\frac{(-10\sqrt{3}+3)(-15x+3\sqrt{3})}{4x\sqrt{x}(-5x+3\sqrt{x})}[/tex]

For maxima or minima,

[tex]f'(x) = 0[/tex]

[tex]\implies \frac{-10\sqrt{3}+3}{2\sqrt{x}(-5x+3\sqrt{3})}=0[/tex]

[tex]\implies x \approx 0.09[/tex]

At x = 0.09,

f''(x) = negative,

Hence, for x = 0.09, f(x) is maximum.

Q&A Education