Respuesta :

notice f(x)=2|x−3| , what value of "x" makes that group 0?  well, say if make x = 3, then we get |3 - 3| or 0... so 3 then.

[tex]\bf vertex~(h,k)\qquad f(x)=2|x-3|+0\implies f(x)=2|\stackrel{h}{\boxed{3}}-3|+\stackrel{k}{\boxed{0}}[/tex]

that puts the vertex at 3,0.

The vertex of the given function is [tex](3,0)[/tex].

Given:

The given function is [tex]f(x)=2|x-3|[/tex].

To find:

The coordinates of the vertex of the graph of [tex]f(x)[/tex].

Explanation:

The vertex form of an absolute function is:

[tex]f(x)=a|x-h|+k[/tex]         ...(i)

Where, [tex]a[/tex] is a constant and [tex](h,k)[/tex] is the vertex.

We have,

[tex]f(x)=2|x-3|[/tex]          ...(ii)

On comparing (i) and (ii), we get

[tex]h=3[/tex]

[tex]k=0[/tex]

Therefore, the vertex of the given function is [tex](3,0)[/tex].

Learn more:

https://brainly.com/question/14793856

Q&A Education