Respuesta :
notice f(x)=2|x−3| , what value of "x" makes that group 0? well, say if make x = 3, then we get |3 - 3| or 0... so 3 then.
[tex]\bf vertex~(h,k)\qquad f(x)=2|x-3|+0\implies f(x)=2|\stackrel{h}{\boxed{3}}-3|+\stackrel{k}{\boxed{0}}[/tex]
that puts the vertex at 3,0.
[tex]\bf vertex~(h,k)\qquad f(x)=2|x-3|+0\implies f(x)=2|\stackrel{h}{\boxed{3}}-3|+\stackrel{k}{\boxed{0}}[/tex]
that puts the vertex at 3,0.
The vertex of the given function is [tex](3,0)[/tex].
Given:
The given function is [tex]f(x)=2|x-3|[/tex].
To find:
The coordinates of the vertex of the graph of [tex]f(x)[/tex].
Explanation:
The vertex form of an absolute function is:
[tex]f(x)=a|x-h|+k[/tex] ...(i)
Where, [tex]a[/tex] is a constant and [tex](h,k)[/tex] is the vertex.
We have,
[tex]f(x)=2|x-3|[/tex] ...(ii)
On comparing (i) and (ii), we get
[tex]h=3[/tex]
[tex]k=0[/tex]
Therefore, the vertex of the given function is [tex](3,0)[/tex].
Learn more:
https://brainly.com/question/14793856