The law of cosines is used to find the measure of Q.



242 = 202 + 342 – 2(20)(34)cos(Q)

576 = 400 + 1156 – (1360)cos(Q)

576 = 1556 – (1360)cos(Q)

–980 = –(1360)cos(Q)

To the nearest whole degree, the measure of angle Q _____ is
degrees

Respuesta :

the right answer is 44.

Answer:

44 degrees.

Step-by-step explanation:

We are asked to find the measure of angle Q using law of cosines.

Law of cosines:

[tex]c^2=a^2+b^2-2ab\times cos(C)[/tex]

Upon substituting our given values in above formula we will get,

[tex]24^2=20^2+34^2-2\times 20\times 34\times cos(Q)[/tex]

[tex]576=400+1156-1360\times cos(Q)[/tex]

[tex]576=1556-1360\times cos(Q)[/tex]

[tex]576-1556=1556-1556-1360\times cos(Q)[/tex]

[tex]-980=-1360\times cos(Q[/tex]

Upon dividing both sides of our equation by -1360 we will get,

[tex]\frac{-980}{-1360}=\frac{-1360\times cos(Q}{-1360}[/tex]

[tex]0.7205882352941176=cos(Q)[/tex]

Now we will use arccos to solve for the measure of angle Q.

[tex]cos^{-1}(0.7205882352941176)=Q[/tex]

[tex]43.896932391182=Q[/tex]

[tex]Q\approx 44[/tex]

Therefore, the measure of angle Q is 44 degrees.

Q&A Education