Respuesta :

im guessing its B but im not sure

Answer:

[tex]\frac{m - 4}{m + 4} / (m + 2)[/tex] is equivalent to   [tex]\frac{(m - 4)}{(m + 4)(m + 2)}[/tex]

Step-by-step explanation:

Given Parameters;

(m-4)/(m+4) and (m+2)

Required:

To divide and write out the equivalent expression.

Two or more expressions are said to equivalent if and only if they give the same result.

Solving (m-4)/(m+4) divided by (m+2)

We have

[tex]\frac{m - 4}{m + 4}[/tex] divided by [tex]m + 2[/tex]

[tex]= \frac{m - 4}{m + 4} / (m + 2)[/tex]

Convert division to multiplication

[tex]= \frac{m - 4}{m + 4} *\frac{1}{(m + 2)}[/tex]

= [tex]\frac{(m - 4) * 1}{(m + 4) * (m + 2)}[/tex]

[tex]= \frac{(m - 4)}{(m + 4)(m + 2)}[/tex]

We can't simplify any further;

Hence, [tex]\frac{m - 4}{m + 4} / (m + 2)[/tex] is equivalent to   [tex]\frac{(m - 4)}{(m + 4)(m + 2)}[/tex]

To check if this is true

Let m = 1

[tex]\frac{m - 4}{m + 4} / (m + 2)[/tex] becomes

[tex]\frac{1 - 4}{1 + 4} / (1 + 2)[/tex]

[tex]\frac{-3}{5} / (3)[/tex]

[tex]\frac{-3}{5} * \frac{1}{3}[/tex]

[tex]\frac{-1}{5}[/tex]

And

[tex]\frac{(m - 4)}{(m + 4)(m + 2)}[/tex] becomes

[tex]\frac{(1 - 4)}{(1 + 4)(1 + 2)}[/tex]

[tex]\frac{(-3)}{(5)(3)}[/tex]

[tex]\frac{-1}{5}[/tex]

Hence, [tex]\frac{m - 4}{m + 4} / (m + 2)[/tex] is equivalent to   [tex]\frac{(m - 4)}{(m + 4)(m + 2)}[/tex]

Q&A Education