Answer:
300 yd³
Step-by-step explanation:
To find the volume of the given figure we can use the formula for the volume of a square-based pyramid:
[tex]\boxed{\begin{array}{l}\underline{\textsf{Volume of a Square-based Pyramid}}\\\\V =\dfrac{1}{3}b^2h\\\\\textsf{where:}\\\phantom{ww}\bullet\;\textsf{$V$ is the volume.}\\\phantom{ww}\bullet\;\textsf{$b$ is the length of the base edge.}\\\phantom{ww}\bullet\;\textsf{$h$ is the height perpendicular to the base.}\end{array}}[/tex]
In this case:
Substitute the values into the formula and solve for V:
[tex]V =\dfrac{1}{3}\cdot 10^2\cdot 9\\\\\\V =\dfrac{1}{3}\cdot 100\cdot 9\\\\\\V=\dfrac{1}{3} \cdot 900\\\\\\V =\dfrac{900}{3}\\\\\\V=300\; \sf yd^3[/tex]
Therefore, the volume of the given figure is 300 yd³.