Which statement best describes how to determine whether f(x) = x3 + 5x + 1 is an even function?
Determine whether –(x3 + 5x + 1) is equivalent to x3 + 5x + 1.
Determine whether (–x)3 + 5(–x) + 1 is equivalent to x3 + 5x + 1.
Determine whether –x3 + 5x + 1 is equivalent to –(x3 + 5x + 1).
Determine whether (–x)3 + 5(–x) + 1 is equivalent to –(x3 + 5x + 1).

Respuesta :

Its B -Determine whether (–x)3 + 5(–x) + 1 is equivalent to x3 + 5x + 1.

The right answer is: Determine whether [tex](-x)^3+5(-x)+1[/tex] is equivalent to [tex]x^3+5x+1[/tex]


A function is said to be even if its graph is symmetric with respect to the [tex]y-axis[/tex]. That is:

[tex]A \ function \ y=f(x) \ is \ \mathbf{even} \ if, \ for \ each \ x \ in \ the \ domain \ of \  f:\\ \\ f(-x)=f(x)[/tex]


According to this definition, the statement that best describes if the function:

[tex]f(x)=x^3+5x+1[/tex]

is even, is:


Determine whether [tex](-x)^3+5(-x)+1[/tex] is equivalent to [tex]x^3+5x+1[/tex]


By doing this, we have:

[tex]f(-x)=(-x)^3+5(-x)+1 \\ \\ \therefore \ f(-x)=-x^3-5x+1[/tex]


As you can see:

[tex]f(x) \neq f(-x)[/tex]


Conclusion: The function is not even.

Q&A Education