Respuesta :

msm555

Answer:

J'(2, -2)

K'(-4, 4)

L'(-1, 2)

Step-by-step explanation:

To reflect the points J(2, 4), K(-4, -2), and L(-1, 0) across the line [tex]y = 1[/tex], we will use the reflection formula:

[tex](x, y) \to (x, 2k - y)[/tex]

where

[tex]k = 1[/tex] (the [tex]y[/tex]-coordinate of the line of reflection).

Reflecting point J(2, 4):

[tex] J'(2, 4) \to (2, 2(1) - 4) = (2, 2 - 4) = (2, -2) [/tex]

So, the reflection of J(2, 4) across [tex]y = 1[/tex] is J'(2, -2).

Reflecting point K(-4, -2):

[tex] K'(-4, -2) \to (-4, 2(1) - (-2)) = (-4, 2 + 2) = (-4, 4) [/tex]

So, the reflection of K(-4, -2) across [tex]y = 1[/tex] is K'(-4, 4).

Reflecting point L(-1, 0):

[tex] L'(-1, 0) \to (-1, 2(1) - 0) = (-1, 2) [/tex]

So, the reflection of L(-1, 0) across [tex]y = 1[/tex] is L'(-1, 2).

Therefore, the reflected points across the line [tex]y = 1[/tex] are:

J'(2, -2)

K'(-4, 4)

L'(-1, 2)

Note: J' is A, K' is B and L' is C in graph.

Ver imagen msm555
Q&A Education