The angle measurements of a triangle are shown in the diagram.
What is the value of X?
Answer:
x = 28°
Step-by-step explanation:
Given :
• A triangle whose angles are 2x° , (3x - 10)° and 50°.
We have to find :
• Value of x
Solution :
We know that sum of each interior angles of triangle is equal to 180°. So :
[tex] \sf{ \: \: \: \: \: \: \: \: \: \: \: \: \dashrightarrow \: \: 2x + 3x - 10 + 50 = 180}[/tex]
Calculating value of x '
[tex] \sf{ \: \: \: \: \: \: \: \: \: \: \: \: \dashrightarrow \: \: 5x + 40 = 180}[/tex]
[tex] \sf{ \: \: \: \: \: \: \: \: \: \: \: \: \dashrightarrow \: \: 5x = 180 - 40}[/tex]
[tex] \sf{ \: \: \: \: \: \: \: \: \: \: \: \: \dashrightarrow \: \: 5x = 140}[/tex]
[tex]\sf{ \: \: \: \: \: \: \: \: \: \: \: \: \dashrightarrow \: \: x = \dfrac{140}{5}}[/tex]
[tex]\sf{ \: \: \: \: \: \: \: \: \: \: \: \: \dashrightarrow \: \: \underline{ \boxed{\bold{x = 28°}}}} \: \: \: \bigstar[/tex]
>>> Therefore, value of x is "28°".