Respuesta :

Answer:

To find the Laplacian of a function, we need to take the second partial derivatives of the function with respect to each variable and then sum them up. In this case, we have:

f(x, y, z) = e^(x^2 + y^2 + z^2)

Now, let's calculate the Laplacian:

∇^2 f(x, y, z) = ∂^2f/∂x^2 + ∂^2f/∂y^2 + ∂^2f/∂z^2

Taking the partial derivatives:

∂f/∂x = 2xe^(x^2 + y^2 + z^2)

∂^2f/∂x^2 = 2e^(x^2 + y^2 + z^2) + 4x^2e^(x^2 + y^2 + z^2)

∂f/∂y = 2ye^(x^2 + y^2 + z^2)

∂^2f/∂y^2 = 2e^(x^2 + y^2 + z^2) + 4y^2e^(x^2 + y^2 + z^2)

∂f/∂z = 2ze^(x^2 + y^2 + z^2)

∂^2f/∂z^2 = 2e^(x^2 + y^2 + z^2) + 4z^2e^(x^2 + y^2 + z^2)

Now, summing up the second partial derivatives:

∇^2 f(x, y, z) = 2e^(x^2 + y^2 + z^2) + 4x^2e^(x^2 + y^2 + z^2) + 2e^(x^2 + y^2 + z^2) + 4y^2e^(x^2 + y^2 + z^2) + 2e^(x^2 + y^2 + z^2) + 4z^2e^(x^2 + y^2 + z^2)

Simplifying:

∇^2 f(x, y, z) = 8e^(x^2 + y^2 + z^2) + 4x^2e^(x^2 + y^2 + z^2) + 4y^2e^(x^2 + y^2 + z^2) + 4z^2e^(x^2 + y^2 + z^2)

Therefore, the Laplacian of f(x, y, z) = e^(x^2 + y^2 + z^2) is:

∇^2 f(x, y, z) = 8e^(x^2 + y^2 + z^2) + 4x^2e^(x^2 + y^2 + z^2) + 4y^2e^(x^2 + y^2 + z^2) + 4z^2e^(x^2 + y^2 + z^2)

Q&A Education