Respuesta :

Answer:

2

Step-by-step explanation:

Given expression:

[tex]\large\text{$\dfrac{216^{\frac13}}{27^{\frac13}}$}[/tex]

Part 1

To simplify the numerator, rewrite 216 as 6³:

[tex]\large\text{$216^{\frac13}=(6^3)^{\frac13}$}[/tex]

Now, apply the power of a power exponent rule:

[tex]\large\text{$(6^3)^{\frac13}=6^{\left(3 \times \frac13\right)}=6^1=6$}[/tex]

Therefore, the numerator simplifies to 6.

[tex]\dotfill[/tex]

Part 2

To simplify the denominator, rewrite 27 as 3³:

[tex]\large\text{$27^{\frac13}=(3^3)^{\frac13}$}[/tex]

Now, apply the power of a power exponent rule:

[tex]\large\text{$(3^3)^{\frac13}=3^{\left(3 \times \frac13\right)}=3^1=3$}[/tex]

Therefore, the denominator simplifies to 3.

[tex]\dotfill[/tex]

Part 3

As the numerator simplifies to 6 and the denominator simplifies to 3, then:

[tex]\large\text{$\dfrac{216^{\frac13}}{27^{\frac13}}=\dfrac{6}{3}=2$}[/tex]

simplifying the top expression would give you 6

this is because 216^1/3 is equal to 6 when plugged into a calculator.

then the dominator simplifies into 3 because 27^1/3 = 3

then you divide whats leftover so

6/3 which equals 2

therefore the answer is 2.
Q&A Education