Answer:
(D) P/2
Explanation:
Power of Lens:
[tex]\boxed{P=\left(\frac{n_2}{n_1}-1\right)\left(\frac{1}{R_1} +\frac{1}{R_2} \right) }[/tex]
where:
Given:
R₂ = ∞ (flat surface has a radius of ∞)
[tex]\displaystyle P_{double-convex}:P_{cut\ lens}[/tex]
[tex]\displaystyle =\left[\left(\frac{n_2}{n_1}-1\right)\left(\frac{1}{R} +\frac{1}{R} \right) \right]:\left[\left(\frac{n_2}{n_1}-1\right)\left(\frac{1}{R} +\frac{1}{\infty} \right)\right][/tex]
[tex]\displaystyle =\left(\frac{1}{R} +\frac{1}{R} \right):\left(\frac{1}{R} +\frac{1}{\infty} \right)[/tex]
[tex]\displaystyle =\frac{2}{R} :\left(\left\frac{1}{R} +0\right)[/tex]
[tex]=2:1[/tex]
Therefore, the power of the cut lens will be [tex]\frac{1}{2}[/tex] of the power of the double-convex lens.
The answer is (D) P/2