Given: AXYZ is a right triangle.
Prove: a² + b² = c²
Statement:
1. AXYZ is a right triangle.
2.
3. Draw the altitude from the hypotenuse to.
the right angle and label the intersection point
W. Label each new segment "d" and "e" of the
hypotenuse.
b
e
X
12. a²
= cd and b² = ce
13. a² + b² = cd + ce
14. a² + b² = c(d + e)
15. d +e=c
16. a² + b² = c * C
17. a² + b² = c²
b
Y
3. Construction
4.
14. Definition of Altudude
5. AXWY & AYWZ are right triangles 5. Definition of Altuidue
6. < XYZ, < YWX and
6. Right Angle Theorem
7. < X < X and < Z =
7.
8. AXWY~AXYZ
8. AAN
9. AA ~
9. AYWZ-AXYZ
10. AXWY AYWZ
10. Transitive Property of Similarity
11. =and=
11. Definition of Similar Triangles
1. Given
2. Definition of Right Triangle
E
15.
a
16.
Reason:
17. Simplify
Cross property
113. Substution property
14. Distributive Property of Equality
Can you please help me.