Respuesta :

Step-by-step explanation:

Given the equation

[tex]3x^3\:+10x^2-x-12=0[/tex]

Steps

[tex]3x^3+10x^2-x-12[/tex]

Rational Root Theorem definition

[tex]\mathrm{For\:a\:polynomial\:equation\:with\:integer\:coefficients:\quad }a_nx^n+a_{n-1}x^{n-1}+\ldots +a_0[/tex]

[tex]\mathrm{If\:}a_0\mathrm{\:and\:}a_n\mathrm{\:are\:integers,\:then\:if\:there\:is\:a\:rational\:solution}[/tex]

[tex]it\:could\:be\:found\:by\:checking\:all\:the\:numbers\:produced\:for\:\pm \frac{dividers\:of\:a_0}{dividers\:of\:a_n}[/tex]

[tex]a_0=12,\:\quad a_n=3[/tex]

[tex]\mathrm{The\:dividers\:of\:}a_0:\quad 1,\:2,\:3,\:4,\:6,\:12,\:\quad \mathrm{The\:dividers\:of\:}a_n:\quad 1,\:3[/tex]

[tex]\mathrm{The\:following\:rational\:numbers\:are\:candidate\:roots:}\quad \pm \frac{1,\:2,\:3,\:4,\:6,\:12}{1,\:3}[/tex]

Plugging x = -1 is False

[tex]3\left(-1\right)^3+10\left(-1\right)^2-\left(-1\right)-12=0[/tex]

[tex]-4=0[/tex]    ∵L.H.S ≠ R.H.S

Plugging x = 1 is True

[tex]3\cdot \:1^3+10\cdot \:1^2-1-12=0[/tex]

[tex]0=0[/tex]      ∵ L.H.S = R.H.S

Similarly,

x = -2 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = 2 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -3 satisfies the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

As

[tex]3\left(-3\right)^3+10\left(-3\right)^2-\left(-3\right)-12=0[/tex]

[tex]0=0[/tex]       ∵ L.H.S = R.H.S

x = 3 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = 4 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -4 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = 6 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -6 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -12 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = 12 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -1/3 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = 1/3 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -2/3 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = 2/3 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -4/3 satisfies the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

As

[tex]3\left(-\frac{4}{3}\right)^3+10\left(-\frac{4}{3}\right)^2-\left(-\frac{4}{3}\right)-12=0[/tex]      ∵ L.H.S = R.H.S  

x = 4/3 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -2 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = 2 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = -4 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

x = 4 does not satisfy the equation [tex]3x^3\:+10x^2-x-12=0[/tex].

Hence, out of all the mentioned rational roots of the equation [tex]3x^3\:+10x^2-x-12=0[/tex], the rational roots which validate the equation are [tex]x=-\frac{4}{3},\:x=1,\:x=-3[/tex].

Keywords: rational roots, rational root theorem

Learn more about rational roots from brainly.com/question/7594092

#learnwithBrainly

Q&A Education