Respuesta :

✰Answer:

6x(9x² - y²) + 6y²

✰Step-by-step explanation:

To factorize the expression (3x + y)³ + (3x - y)³, we can use the formula for the sum of cubes:

a³ + b³ = (a + b)(a² - ab + b²)

Applying this formula to our expression, we get:

(3x + y)³ + (3x - y)³ = [(3x + y) + (3x - y)][(3x + y)² - (3x + y)(3x - y) + (3x - y)²]

Simplifying further, we have:

(3x + y)³ + (3x - y)³ = [6x][(3x + y)² - (9x² - y²) + (3x - y)²]

Now, let's expand and simplify the terms inside the square brackets:

(3x + y)² = (3x + y)(3x + y) = 9x² + 6xy + y²

(3x - y)² = (3x - y)(3x - y) = 9x² - 6xy + y²

(3x + y)(3x - y) = 9x² - y²

Substituting these values back into our expression, we get:

(3x + y)³ + (3x - y)³ = [6x][(9x² + 6xy + y²) - (9x² - y²) + (9x² - 6xy + y²)]

Simplifying the terms inside the square brackets:

(9x² + 6xy + y²) - (9x² - y²) + (9x² - 6xy + y²) = 9x² + 6xy + y² - 9x² + y² + 9x² - 6xy + y²

Combining like terms:

9x² - 9x² + 9x² + 6xy - 6xy + y² + y² + y² = 3y² + 3y²

Simplifying further:

3y² + 3y² = 6y²

Therefore, the factorized form of (3x + y)³ + (3x - y)³ is:

6x(9x² - y²) + 6y²

⠀⠀⢀⣀⣀⡀⠀⠀⠀⠀⠀⠀⠀⣠⠾⠛⠶⣄⢀⣠⣤⠴⢦⡀⠀⠀⠀⠀

⠀⠀⠀⢠⡿⠉⠉⠉⠛⠶⠶⠖⠒⠒⣾⠋⠀⢀⣀⣙⣯⡁⠀⠀⠀⣿⠀⠀⠀⠀

⠀⠀⠀⢸⡇⠀⠀⠀⠀⠀⠀⠀⠀⢸⡏⠀⠀⢯⣼⠋⠉⠙⢶⠞⠛⠻⣆⠀⠀⠀

⠀⠀⠀⢸⣧shae⠀⠀⠀⠀⠀⠀⠻⣦⣤⡤⢿⡀⠀⢀⣼⣷⠀⠀⣽⠀⠀⠀

⠀⠀⠀⣼⠃⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠉⠙⢏⡉⠁⣠⡾⣇⠀⠀⠀

⠀⠀⢰⡏⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠙⠋⠉⠀⢻⡀⠀⠀

⣀⣠⣼⣧⣤⠀⠀⠀⣀⡀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⡀⠀⠀⠐⠖⢻⡟⠓⠒

⠀⠀⠈⣷⣀⡀⠀⠘⠿⠇⠀⠀⠀⢀⣀⣀⠀⠀⠀⠀⠿⠟⠀⠀⠀⠲⣾⠦⢤⠀

⠀⠀⠋⠙⣧⣀⡀⠀⠀⠀⠀⠀⠀⠘⠦⠼⠃⠀⠀⠀⠀⠀⠀⠀⢤⣼⣏⠀⠀⠀

⠀⠀⢀⠴⠚⠻⢧⣄⣀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⣀⣤⠞⠉⠉⠓⠀⠀

⠀⠀⠀⠀⠀⠀⠀⠈⠉⠛⠛⠶⠶⠶⣶⣤⣴⡶⠶⠶⠟⠛⠉⠀⠀⠀⠀⠀⠀⠀

Q&A Education