Respuesta :
Hello, Marymack!
We know that in a geometric sequence defined by [tex]\mathsf{a_1}[/tex] and [tex]\mathsf{r}[/tex] , the sum can be calculated the following way:
[tex]\mathsf{S_n = \dfrac{a_1}{1-r}}\\ \\ \\ \\ \mathsf{S_n = \dfrac{0.3}{1-0.55}}\\ \\ \\ \mathsf{S_n = \dfrac{0.3}{0.45}}\\ \\ \\ \boxed{\mathsf{S_n = \dfrac{2}{3}=0.666...}}[/tex]
We know that in a geometric sequence defined by [tex]\mathsf{a_1}[/tex] and [tex]\mathsf{r}[/tex] , the sum can be calculated the following way:
[tex]\mathsf{S_n = \dfrac{a_1}{1-r}}\\ \\ \\ \\ \mathsf{S_n = \dfrac{0.3}{1-0.55}}\\ \\ \\ \mathsf{S_n = \dfrac{0.3}{0.45}}\\ \\ \\ \boxed{\mathsf{S_n = \dfrac{2}{3}=0.666...}}[/tex]
Answer:
The sum of the infinite geometric sequence is given by:
[tex]S_{\infty} = \frac{a_1}{1-r}[/tex] ....[1]
where,
[tex]a_1[/tex] is the first term
r is the common ratio.
As per the statement:
Given that [tex]a_1 = 0.3[/tex] and r = 0.55
To find the sum of this infinite geometric series.
Substitute the given values in [1] we have;
[tex]S_{\infty} = \frac{0.3}{1-0.55}[/tex]
⇒[tex]S_{\infty} = \frac{0.3}{0.45}[/tex]
Simplify:
[tex]S_{\infty} \approx 0.67[/tex]
Therefore, the sum of this infinite geometric series approximate is, 0.67