Respuesta :
Answer:
5 cubic units.
Step-by-step explanation:
We have been given that a can soda can has a volume of 15 cubic units and a diameter of 2.
First of all let us find the height of cylinder using volume of cylinder formula.
[tex]\text{Volume of cylinder}=\pi r^2 h[/tex], where,
r = radius of cylinder,
h = Height of cylinder.
Now let us divide our diameter by 2 to get the radius of cylinder.
[tex]\text{radius of cylinder}=\frac{2}{2}=1[/tex]
Let us substitute our given values in volume of cylinder formula to get the height of cylinder.
[tex]15=\pi*1^2*h[/tex]
[tex]15=\pi*h[/tex]
[tex]\frac{15}{\pi}=\frac{\pi*h}{\pi}[/tex]
[tex]\frac{15}{\pi}=h[/tex]
Now we will use volume of cone formula to find the volume of our given cone inscribed inside cylinder.
[tex]\text{Volume of cone}=\frac{1}{3}\pi*r^2h[/tex]
Since the height and radius of the largest cone that can fit inside the can will be equal to height and radius of can, so we will substitute [tex]\frac{15}{\pi}=h[/tex] and [tex]r=1[/tex] in the volume formula of cone.
[tex]\text{Volume of cone}=\frac{1}{3}\pi*1^2*\frac{15}{\pi}[/tex]
[tex]\text{Volume of cone}=\frac{1}{3}*1*15[/tex]
[tex]\text{Volume of cone}=5[/tex]
Therefore, volume of our given cone will be 5 cubic units.