Explanation:
To determine the minimum values of the static friction coefficients, we can use the formula for centripetal force:
\[ F_{\text{centripetal}} = \mu \cdot F_{\text{normal}} \]
The centripetal force experienced by each parcel is provided as:
\[ F_{\text{centripetal}} = m \cdot \omega^2 \cdot r \]
From your previous calculations:
- \( m_1 = 2.1 \, \text{kg} \), \( r_1 = 1.2 \, \text{m} \), \( F_{\text{centripetal}_1} = 0.11 \, \text{N} \)
- \( m_2 = 4.0 \, \text{kg} \), \( r_2 = 2.4 \, \text{m} \), \( F_{\text{centripetal}_2} = 0.42 \, \text{N} \)
Using the formula \( F_{\text{centripetal}} = \mu \cdot F_{\text{normal}} \), and \( F_{\text{normal}} = m \cdot g \) where \( g \) is the acceleration due to gravity, we can calculate the minimum values of the static friction coefficients \( \mu \).
For \( m_1 \):
\[ F_{\text{centripetal}_1} = \mu_1 \cdot m_1 \cdot g \]
\[ 0.11 \, \text{N} = \mu_1 \cdot 2.1 \, \text{kg} \cdot 9.81 \, \text{m/s}^2 \]
\[ \mu_1 = \frac{0.11 \, \text{N}}{2.1 \, \text{kg} \cdot 9.81 \, \text{m/s}^2} \]
\[ \mu_1 \approx 5.4 \times 10^{-3} \]
For \( m_2 \):
\[ F_{\text{centripetal}_2} = \mu_2 \cdot m_2 \cdot g \]
\[ 0.42 \, \text{N} = \mu_2 \cdot 4.0 \, \text{kg} \cdot 9.81 \, \text{m/s}^2 \]
\[ \mu_2 = \frac{0.42 \, \text{N}}{4.0 \, \text{kg} \cdot 9.81 \, \text{m/s}^2} \]
\[ \mu_2 \approx 1.1 \times 10^{-2} \]
For the second part of your question, the maximum angular speed without slipping for each parcel is given by the formula:
\[ \omega_{\text{max}} = \sqrt{\frac{\mu \cdot g}{r}} \]
For \( m_1 \):
\[ \omega_{\text{max}_1} = \sqrt{\frac{1.2 \times 10^{-2} \cdot 9.81 \, \text{m/s}^2}{1.2 \, \text{m}}} \]
\[ \omega_{\text{max}_1} \approx 0.42 \, \text{rad/s} \]
For \( m_2 \):
\[ \omega_{\text{max}_2} = \sqrt{\frac{1.8 \times 10^{-2} \cdot 9.81 \, \text{m/s}^2}{2.4 \, \text{m}}} \]
\[ \omega_{\text{max}_2} \approx 0.36 \, \text{rad/s} \]
So, \( \omega_{\text{max}_1} > \omega_{\text{max}_2} \).
Finally, why each package begins to slide on the platform when its angular velocity is less than the calculated maximum angular velocity:
When the angular velocity of the platform is less than the calculated maximum angular velocity for each package, the frictional force between the package and the platform is not sufficient to provide the necessary centripetal force to keep the package moving in a circular path. As a result, the package starts to slip, indicating that the static friction force is no longer able to counteract the motion and prevent slipping.