The radius of Jupiter is 11 times that of earth, and the free-fall acceleration near its surface is 2.5 times that on earth. If we someday put a spacecraft in low Jupiter orbit, its orbital speed will be


a)Greater than that for an earth satellite.
b)The same as that for an earth satellite.
c)Less than that for an earth satellite.

Respuesta :

Answer:

a) Greater than that for an earth satellite.

Explanation:

The orbital speed of a spacecraft depends on the gravitational acceleration and the radius of the celestial body. With Jupiter having a larger radius and higher free-fall acceleration compared to Earth, a spacecraft in low Jupiter orbit would require a greater orbital speed than that for an Earth satellite.

msm555

Answer:

a) Greater than that for an Earth satellite.

Explanation:

The orbital speed of a spacecraft in a low orbit around a celestial body depends on the gravitational acceleration at that location. The formula for orbital speed ([tex]\sf v[/tex]) is given by:

[tex]\boxed{\boxed{\sf  v = \sqrt{\dfrac{G \cdot M}{R}}}} [/tex]

where:

[tex]\sf v[/tex] is the orbital speed,

[tex]\sf G[/tex] is the gravitational constant ([tex]\sf 6.67430 \times 10^{-11} \ \textsf{m}^3 \ \textsf{kg}^{-1} \ \textsf{s}^{-2}[/tex]),

[tex]\sf M[/tex] is the mass of the celestial body,

[tex]\sf R[/tex] is the distance from the center of the celestial body to the spacecraft.

In this case, we know that the free-fall acceleration ([tex]\sf g[/tex]) near Jupiter's surface is 2.5 times that on Earth, and the radius of Jupiter ([tex]\sf R_{\textsf{Jupiter}}[/tex]) is 11 times that of Earth ([tex]\sf R_{\textsf{Earth}}[/tex]).

[tex]\sf  g_{\textsf{Jupiter}} = 2.5 \cdot g_{\textsf{Earth}} [/tex]

[tex]\sf  R_{\textsf{Jupiter}} = 11 \cdot R_{\textsf{Earth}} [/tex]

Now, the gravitational acceleration is related to the orbital speed by the formula:

[tex]\sf  g = \dfrac{v^2}{R} [/tex]

We can express [tex]\sf v[/tex] in terms of [tex]\sf g[/tex] and [tex]\sf R[/tex]:

[tex]\sf  v = \sqrt{g \cdot R} [/tex]

For Jupiter:

[tex]\sf  g_{\textsf{Jupiter}} = \dfrac{v_{\textsf{Jupiter}}^2}{R_{\textsf{Jupiter}}} [/tex]

Substitute the given relationships:

[tex]\sf  2.5 \cdot g_{\textsf{Earth}} = \dfrac{v_{\textsf{Jupiter}}^2}{11 \cdot R_{\textsf{Earth}}} [/tex]

Now, let's compare the orbital speed of the spacecraft around Jupiter ([tex]\sf v_{\textsf{Jupiter}}[/tex]) with the orbital speed of an Earth satellite ([tex]\sf v_{\textsf{Earth}}[/tex]):

[tex]\sf  v_{\textsf{Jupiter}} = \sqrt{2.5 \cdot g_{\textsf{Earth}} \cdot 11 \cdot R_{\textsf{Earth}}} [/tex]

[tex]\sf  v_{\textsf{Jupiter}} = \sqrt{2.5 \cdot v_{\textsf{Earth}}^2} [/tex]

[tex]\sf  v_{\textsf{Jupiter}} = \sqrt{2.5} \cdot v_{\textsf{Earth}} [/tex]

Since [tex]\sf \sqrt{2.5}[/tex] is greater than 1, the orbital speed around Jupiter ([tex]\sf v_{\textsf{Jupiter}}[/tex]) is greater than the orbital speed of an Earth satellite ([tex]\sf v_{\textsf{Earth}}[/tex]).

Therefore, the correct answer is:

a) Greater than that for an Earth satellite.

Q&A Education