Answer:
b)20 s
Explanation:
The time it takes for the cylindrical space station to complete one rotation can be determined using the formula for the period [tex]\sf (T)[/tex] of a rotating object:
[tex] \boxed{\boxed{\sf T = \dfrac{2\pi}{\omega}}} [/tex]
where:
- [tex]\sf T [/tex] is the period,
- [tex]\sf \omega [/tex] is the angular velocity.
The angular velocity [tex]\sf ( \omega )[/tex] is related to the gravitational acceleration [tex]\sf ( g )[/tex] and the radius [tex]\sf ( r )[/tex] of the rotating object by the formula:
[tex]\sf \omega = \sqrt{\dfrac{g}{r}} [/tex]
Given that the diameter of the cylindrical space station is 200 m, the radius [tex]\sf ( r )[/tex] is half of the diameter:
[tex]\sf r = \dfrac{200}{2} = 100 \, \text{m} [/tex]
Now, we can calculate [tex]\sf \omega [/tex] and then use it to find the period [tex]\sf T [/tex].
[tex]\sf \omega = \sqrt{\dfrac{g}{r}} [/tex]
[tex]\sf \omega = \sqrt{\dfrac{g}{100}} [/tex]
The value of [tex]\sf g [/tex] is approximately [tex]\sf 9.8 \, \text{m/s}^2 [/tex].
[tex]\sf \omega = \sqrt{\dfrac{9.8}{100}} [/tex]
[tex]\sf \omega = \sqrt{0.098} [/tex]
Now, substitute [tex]\sf \omega [/tex] back into the formula for [tex]\sf T [/tex]:
[tex]\sf T = \dfrac{2\pi}{\omega} [/tex]
[tex]\sf T = \dfrac{2\pi}{\sqrt{0.098}} [/tex]
[tex]\sf T = \dfrac{ 6.283185307 }{0.3130495168} [/tex]
[tex]\sf T \approx 20.07089923 [/tex]
[tex]\sf T \approx 20 \textsf{ (rounded to nearest whole number)}[/tex]
So, the station takes approximately 20s to complete one rotation.
Therefore, the answer is b) 20 s