Tank 1 initially contains 50 gals of water with 10 oz of salt in it, while tank 2 initially contains 20 gals of water with 15 oz of salt in it. water containing 2 oz/gal of salt flows into tank 1 at a rate of 5 gal/min and the well-stirred mixture flows from tank 1 into tank 2 at the same rate of 5 gal/min. the solution in tank 2 flows out to the ground at a rate of 5 gal/min. if x1(t) and x2(t) represent the number of ounces of salt in tank 1 and tank 2, respectively, set up but do not solve an initial value problem describing this system.

Respuesta :

[tex]\dfrac{\mathrm dx_1}{\mathrm dt}=\dfrac{2\text{ oz}}{1\text{ gal}}\dfrac{5\text{ gal}}{1\text{ min}}-\dfrac{x_1(t)\text{ oz}}{50\text{ gal}}\dfrac{5\text{ gal}}{1\text{ min}}[/tex]
[tex]\dfrac{\mathrm dx_2}{\mathrm dt}=\dfrac{x_1(t)\text{ oz}}{50\text{ gal}}\dfrac{5\text{ gal}}{1\text{ min}}-\dfrac{x_2(t)\text{ oz}}{20\text{ gal}}\dfrac{5\text{ gal}}{1\text{ min}}[/tex]

[tex]\implies\begin{cases}\dfrac{\mathrm dx_1}{\mathrm dt}=10-\dfrac1{10}x_1\\\\\dfrac{\mathrm dx_2}{\mathrm dt}=\dfrac1{10}x_1-\dfrac14x_2\\\\x_1(0)=10\\\\x_2(0)=15\end{cases}[/tex]
Q&A Education