Respuesta :
[tex]f(x)=\begin{cases}5-x^2&\text{for }x\le c\\x&\text{for }x>c\end{cases}[/tex]
will be continuous as long as
[tex]\displaystyle\lim_{x\to c^-}f(x)=\lim_{x\to c^+}f(x)=f(c)[/tex]
We have
[tex]\displaystyle\lim_{x\to c^-}f(x)=\lim_{x\to c}(5-x^2)=5-c^2[/tex]
[tex]\displaystyle\lim_{x\to c^+}f(x)=\lim_{x\to c}x=c[/tex]
so we must satisfy
[tex]5-c^2=c\implies c^2+c-5=0\implies c=\dfrac{-1\pm\sqrt{21}}2[/tex]
will be continuous as long as
[tex]\displaystyle\lim_{x\to c^-}f(x)=\lim_{x\to c^+}f(x)=f(c)[/tex]
We have
[tex]\displaystyle\lim_{x\to c^-}f(x)=\lim_{x\to c}(5-x^2)=5-c^2[/tex]
[tex]\displaystyle\lim_{x\to c^+}f(x)=\lim_{x\to c}x=c[/tex]
so we must satisfy
[tex]5-c^2=c\implies c^2+c-5=0\implies c=\dfrac{-1\pm\sqrt{21}}2[/tex]
The values of c such that the function f is continuous are: c = -2.79 and c = 1.79
The function is given as:
[tex]f(x) = \left\{ \begin{array}{lcl} {5} - x^{2}, & & x \le c \\ x, & & x > c \end{array}\right.[/tex]
For the function to be continuous, then the following must be true
[tex]5 - x^2 = x[/tex]
Substitute c for x
[tex]5 - c^2 = c[/tex]
Express as a quadratic function
[tex]c^2 + c - 5 = 0[/tex]
Using a graphing calculator, the values of c are:
c = -2.79 and c = 1.79
Read more about continuous functions at:
https://brainly.com/question/9412728