Respuesta :

Answer:

  (√6 +√2)/4

Step-by-step explanation:

You want the exact value of cos(15°).

Trig identity

The difference of angles formula is ...

  cos(α-β) = cos(α)cos(β) +sin(α)sin(β)

Application

This value for cos(15°) can be found as ...

  cos(15°) = cos(45° -30°)

  cos(15°) = cos(45°)cos(30°) +sin(45°)sin(30°)

  = (√2/2)(√3/2) +(√2/2)(1/2) = (√6 +√2)/4

The exact value of cos(15°) is (√6 +√2)/4.

__

Additional comment

Using the half-angle identity, cos(θ/2) = √((1+cos(θ))/2), you get ...

  cos(15°) = √((1 +cos(30°))/2) = √((1 +√3/2)/2) = √((2+√3)/4)

  cos(15°) = √(2+√3)/2

One can simplify this square root by writing it as ...

  cos(15°) = √((8+2√3)/16) = √((√6 +√2)²/16) = (√6 +√2)/4

Ver imagen sqdancefan
Q&A Education