Respuesta :

well first you have to distribute the sqrt (7x). So:
sqrt (7x)(sqrt (x) - 7sqrt (7)) =
sqrt (7x) * sqrt (x) - sqrt (7x) * 7sqrt (7)

now if you have two things multiplied by each other and they are both under the sqrt sign then we can multiply them by each other But we have to leave them under the sqrt sign. so this becomes:
sqrt (7x * x) - 7sqrt (7x *7) =
sqrt (7x^2) - 7sqrt (7^2 *x)

in the first sqrt we have x^2 And in the second we have 7^2. The sqrt of anything squared is the same number without the square. So sqrt (x^2) becomes x and sqrt(7^2) becomes 7. So now we have:
x * sqrt (7) - 7 * 7sqrt (x) =
xsqrt (7) - 49sqrt (x)

Answer:

[tex]\sqrt{7x}(\sqrt{x}-7\sqrt{7})\Rightarrow x\sqrt{7}-49\sqrt{x}[/tex]

Step-by-step explanation:

Given: [tex]\sqrt{7x}(\sqrt{x}-7\sqrt{7})[/tex]

Simplify the expression.

[tex]\Rightarrow \sqrt{7x}(\sqrt{x}-7\sqrt{7})[/tex]

Distribute  [tex]\sqrt{7x}[/tex] over parentheses

[tex]\Rightarrow \sqrt{7x}\cdot\sqrt{x}-\sqrt{7x}\cdot7\sqrt{7}[/tex]

[tex]\Rightarrow \sqrt{7x^2}-7\sqrt{7^2x}[/tex]

square term take out from square root

[tex]\Rightarrow x\sqrt{7}-7\cdot 7\sqrt{x}[/tex]

[tex]\Rightarrow x\sqrt{7}-49\sqrt{x}[/tex]

[tex]\sqrt{7x}(\sqrt{x}-7\sqrt{7})\Rightarrow x\sqrt{7}-49\sqrt{x}[/tex]

Q&A Education