Respuesta :
We can write the equation as [tex] \frac{x^ \frac{3}{5} }{x \frac{1}{4} } [/tex]
this satisfies the law of exponent, in which a^m / a^n is equal to a^(m-n). Therefore, we can write the equation as x^(3/5 - 1/4). Simplifying further, we will have [tex] x^{ \frac{7}{20} } [/tex]
this satisfies the law of exponent, in which a^m / a^n is equal to a^(m-n). Therefore, we can write the equation as x^(3/5 - 1/4). Simplifying further, we will have [tex] x^{ \frac{7}{20} } [/tex]
Answer:
[tex]x^{\frac{7}{20}}[/tex]
Step-by-step explanation:
[tex]\frac{x^\frac{3}{5} }{x^\frac{1}{4} }[/tex]
To divide it we apply exponential property
[tex]\frac{a^m}{a^n} =a^{m-n}[/tex]
when the base are same and the exponents are in division then we subtract the exponents
[tex]\frac{x^\frac{3}{5} }{x^\frac{1}{4} }[/tex]
[tex]x^{\frac{3}{5}-\frac{1}{4}}[/tex]
To subtract the fractions , the denominators should be same
LCD is 20
[tex]x^{\frac{3 \cdot 4}{5 \cdot 4}-\frac{1 \cdot 5}{4 \cdot 5}}[/tex]
[tex]x^{\frac{12}{20}-\frac{5}{20}}[/tex]
[tex]x^{\frac{7}{20}}[/tex]