Respuesta :

Answer:

Option: b is correct.

b. C(10,7)

Step-by-step explanation:

The formula for C(n,k) is evaluated as:

[tex]C(n,k)=\dfrac{n!}{k!\times (n-k)!}[/tex]

Also The formula for P(n,k) is evaluated as:

[tex]C(n,k)=\dfrac{n!}{(n-k)!}[/tex]

[tex]C(10,3)=\dfrac{10!}{3!\times (10-3)!}\\\\C(10,3)=\dfrac{10!}{3\times 7!}\\\\C(10,3)=120[/tex]

a)

[tex]C(3,10)=\dfrac{3!}{10!\times (3-10)!}\\\\C(3,10)=\dfrac{3!}{10!\times (-7)!}[/tex]

and e know the factorial of negative number does not exist.

so, this  is not possible.

Hence, option a is incorrect.

b)

C(10,7)

[tex]C(10,7)=\dfrac{10!}{7!\times (10-7)!}\\\\C(10,7)=\dfrac{10!}{7!\times 3!}\\\\C(10,7)=120[/tex]

Hence, option b is correct.

c)

P(10,3)

[tex]P(10,3)=\dfrac{10!}{(10-3)!}\\\\P(10,3)=\dfrac{10!}{7!}\\\\P(10,3)=720[/tex]

Hence, option c is incorrect.

Hence, C(10,7) is equal to C(10,3).

Hence, option b is correct.

kenaf

Answer:

B. C(10,7)

Step-by-step explanation:

Q&A Education