What other points are on the line of direct variation through (5, 12)? Check all that apply. (0, 0) (2.5, 6) (3, 10) (7.5, 18) (12.5, 24) (15, 36)

Respuesta :

we know that

A relationship between two variables, x, and y, represent a direct variation if it can be expressed in the form [tex]y/x=k[/tex] or [tex]y=kx[/tex]

in this problem we have

the point [tex](5,12)[/tex] is on the line of direct variation

so

Find the constant of proportionality k

[tex]y/x=k[/tex]-------> substitute ------> [tex]k=12/5[/tex]

the equation is

[tex]y=\frac{12}{5}x[/tex]

Remember that

If a point is on the line of direct variation

then

the point must satisfy the equation of direct variation

we're proceeding to verify each point

case A) point [tex](0,0)[/tex]

[tex]x=0\ y=0[/tex]

Substitute the value of x and y in the direct variation equation

[tex]0=\frac{12}{5}*0[/tex]

[tex]0=0[/tex] -------> is true

therefore

the point [tex](0,0)[/tex] is on the line of direct variation

case B) point [tex](2.5,6)[/tex]

[tex]x=2.5\ y=6[/tex]

Substitute the value of x and y in the direct variation equation

[tex]6=\frac{12}{5}*2.5[/tex]

[tex]6=6[/tex] -------> is true

therefore

the point [tex](2.5,6)[/tex] is on the line of direct variation

case C) point [tex](3,10)[/tex]

[tex]x=3\ y=10[/tex]

Substitute the value of x and y in the direct variation equation

[tex]10=\frac{12}{5}*3[/tex]

[tex]10=7.2[/tex] -------> is not  true

therefore

the point [tex](3,10)[/tex] is not on the line of direct variation

case D) point [tex](7.5,18)[/tex]

[tex]x=7.5\ y=18[/tex]

Substitute the value of x and y in the direct variation equation

[tex]18=\frac{12}{5}*7.5[/tex]

[tex]18=18[/tex] -------> is true

therefore

the point [tex](7.5,18)[/tex] is on the line of direct variation

case E) point [tex](12.5,24)[/tex]

[tex]x=12.5\ y=24[/tex]

Substitute the value of x and y in the direct variation equation

[tex]24=\frac{12}{5}*12.5[/tex]

[tex]18=30[/tex] -------> is not true

therefore

the point  [tex](12.5,24)[/tex] is not on the line of direct variation

case F) point [tex](15,36)[/tex]

[tex]x=15\ y=36[/tex]

Substitute the value of x and y in the direct variation equation

[tex]36=\frac{12}{5}*15[/tex]

[tex]36=36[/tex] -------> is true

therefore

the point [tex](15,36)[/tex] is on the line of direct variation

therefore

the answer is

[tex](0,0)[/tex]

[tex](2.5,6)[/tex]

[tex](7.5,18)[/tex]

[tex](15,36)[/tex]


Here's the answers and graph

Ver imagen jaseistrans
Q&A Education