Respuesta :
C. 8/9 because if you do 2/3 divided by 3/4 then that gives you 8/9.
Answer:
C)P(A|B) = [tex]\frac{8}{9}[/tex].
Step-by-step explanation:
Given : P(A^B)= 2/3 and P(B)= 3/4.
TO find : what is P(A|B).
Solution : We have given that P(A^B)= 2/3 and P(B)= 3/4.
By the conditional probability :
P(A|B) = [tex]\frac{P(A\ and\ B)}{P(B)}[/tex].
Plugging the values
P(A|B) = [tex]\frac{P(A\ and\ B)}{P(B)}[/tex].
P(A|B) = [tex]\frac{\frac{2}{3}}{\frac{3}{4}}[/tex].
P(A|B) = [tex]\frac{8}{9}[/tex].
Therefore, C)P(A|B) = [tex]\frac{8}{9}[/tex].