Respuesta :

Assuming that it was dropped at an intital velocity of 0, 14.7s should be your ansewer

Answer:

[tex]-14.7 \frac{m}{s} \hat{j}[/tex].

Explanation:

The kinematic equation for velocity [tex]\vec{V}[/tex] with constant acceleration [tex]\vec{a}[/tex] at time t is :

[tex]\vec{V}(t) \ = \ \vec{V}_0 \ + \ \vec{a} \ t[/tex].

Assuming that the initial velocity is zero

[tex]\vec{V}_0 = 0[/tex]

and knowing that the gravitational acceleration is

[tex]\vec{a} = - 9.8 \frac{m}{s^2} \hat{j}[/tex]

The equation is

[tex]\vec{V}(t) \ =  - 9.8 \frac{m}{s^2} \ t \ \hat{j}[/tex].

After 1.5 seconds, this gives us

[tex]\vec{V}(t) \ =  - 9.8 \frac{m}{s^2} \ t \ \hat{j}[/tex].

[tex]\vec{V}(1.5 s) \ =  - 9.8 \frac{m}{s^2} \ 1.5  s \ \hat{j} = -14.7 \frac{m}{s} \hat{j}[/tex].

And this is the velocity at impact.

Q&A Education