Respuesta :
[tex]\bf \textit{volume of a sphere}\\\\
V=\cfrac{4}{3}\pi r^3\qquad \begin{cases}
r=radius\\
------\\
V=1928\pi
\end{cases}\implies 1928\pi =\cfrac{4}{3}\pi r^3
\\\\\\
1928\pi =\cfrac{4\pi r^3}{3}\implies \cfrac{3\cdot 1928\pi }{4\pi }
=r^3\implies 1446=r^3
\\\\\\
\sqrt[3]{1446}=r\\\\
-------------------------------\\\\
\textit{surface area of a sphere}\\\\
S=4\pi r^2\qquad r=\sqrt[3]{1446}\implies S=4\cdot \pi \cdot \sqrt[3]{1446^2}[/tex]
Using the equation: A=pi^1/3(6(1928pim^3))^2/3 ; you should get the answer A= 749.13. Hopefully that helps