What is the length of SR?
9 units
12 units
15 units
18 units
we know that
In the right triangle RSQ
[tex] cos\ S=\frac{RS}{SQ} [/tex]
[tex] cos\ S=\frac{RS}{25} [/tex] ------> equation [tex] 1 [/tex]
In the right triangle RST
[tex] cos\ S=\frac{ST}{RS} [/tex]
[tex] cos\ S=\frac{9}{RS} [/tex] ------> equation [tex] 2 [/tex]
equate equation [tex] 1 [/tex] and equation [tex] 2 [/tex]
[tex] \frac{RS}{25}=\frac{9}{RS}\\ \\ RS^{2} =25*9\\ \\ RS=\sqrt{225} \\ \\ RS=15\ units [/tex]
therefore
the answer is
the length of SR is [tex] 15\ units [/tex]
Answer:
(C) 15 units
Step-by-step explanation:
From the given figure, it is given that ST=9, TQ=16 and RT=x,
From ΔSRQ, we get
cosS=[tex]\frac{RS}{SQ}[/tex]
cosS=[tex]\frac{RS}{25}[/tex] (1)
Also, from ΔSTR, we have
cosS=[tex]\frac{ST}{RS}[/tex]
cosS=[tex]\frac{9}{RS}[/tex] (2)
From equations (1) and (2), we get
[tex]\frac{RS}{25}=\frac{9}{RS}[/tex]
⇒[tex](RS)^{2}=225[/tex]
⇒[tex]RS=15 units[/tex]
Thus, Option C is correct.