Respuesta :

we know that

In the right triangle RSQ

[tex] cos\ S=\frac{RS}{SQ} [/tex]

[tex] cos\ S=\frac{RS}{25} [/tex] ------> equation [tex] 1 [/tex]

In the right triangle RST

[tex] cos\ S=\frac{ST}{RS} [/tex]

[tex] cos\ S=\frac{9}{RS} [/tex] ------> equation [tex] 2 [/tex]

equate equation [tex] 1 [/tex] and equation [tex] 2 [/tex]

[tex] \frac{RS}{25}=\frac{9}{RS}\\ \\ RS^{2} =25*9\\ \\ RS=\sqrt{225} \\ \\ RS=15\ units [/tex]

therefore

the answer is

the length of SR is [tex] 15\ units [/tex]


Answer:

(C) 15 units

Step-by-step explanation:

From the given figure, it is given that ST=9, TQ=16 and RT=x,

From ΔSRQ, we get

cosS=[tex]\frac{RS}{SQ}[/tex]

cosS=[tex]\frac{RS}{25}[/tex]                        (1)

Also, from ΔSTR, we have

cosS=[tex]\frac{ST}{RS}[/tex]

cosS=[tex]\frac{9}{RS}[/tex]                           (2)

From equations (1) and (2), we get

[tex]\frac{RS}{25}=\frac{9}{RS}[/tex]

⇒[tex](RS)^{2}=225[/tex]

⇒[tex]RS=15 units[/tex]

Thus, Option C is correct.

Q&A Education