Respuesta :

Answer:

A. [tex]\displaystyle 12°[/tex]

Step-by-step explanation:

We will be using the Law of Sines to find the [tex]\displaystyle m∠Z,[/tex] therefore we will use the given variables in the formulas:

Solving for Angles

[tex]\displaystyle \frac{sin∠Z}{z} = \frac{sin∠Y}{y} = \frac{sin∠X}{x}[/tex]

**Use [tex]\displaystyle sin^{-1}[/tex] in your solution or it will be thrown off!

Solving for Sides

[tex]\displaystyle \frac{z}{sin∠Z} = \frac{y}{sin∠Y} = \frac{x}{sin∠X}[/tex]

-----------------------------------------------------------------------------------

[tex]\displaystyle \frac{sin\:96}{48} = \frac{sin∠Z}{10} → \frac{10sin\:96}{48} = sin∠Z → 0,2071920615 ≈ sin∠Z → 11,95785043° ≈ sin^{-1}\:0,2071920615 \\ \\ 11,95785043° ≈ m∠Z → 12° ≈ m∠Z[/tex]

I am delighted to assist you at any time.

Q&A Education