Respuesta :
Answer: [tex]2400\pi\ units^3\text{ or }7536\ units^3[/tex]
Step-by-step explanation:
Given: The slant height of oblique cylinder (l)=26 units
The radius of oblique cylinder (r)=10 units
Let h be the height of the cylinder, then we have
[tex]h=\sqrt{l^2-r^2} \\\\\Rightarrow h=\sqrt{(26)^2-(10)^2} \\\\\Rightarrow h=\sqrt{676-100} \\\\\Rightarrow h=\sqrt{576} \\\\\Rightarrow h=24\ units[/tex]
Now, the volume of oblique cylinder is given by :-
[tex]V=\pi r^2h\\\\\Rightarrow V=\pi(10)^2(24)\\\\\Rightarrow V=2400\pi\ units^3[/tex]
If we substitute [tex]\pi=3.14[/tex], then we get
Volume of oblique cylinder=[tex]2400\times3.14=7536\ units^3[/tex]