Respuesta :
Answer:
[tex](x+2)^2+(y-5)^2=16[/tex]
Step-by-step explanation:
Given : [tex]x^2+4x+y^2-10y+13=0[/tex]
To Find: What is the equation of the circle in standard form?
Solution:
[tex]x^2+4x+y^2-10y+13=0[/tex]
[tex]x^2+4x+2^2-2^2+y^2-10y+5^2-5^2+13=0[/tex]
[tex](x+2)^2-4+(y-5)^2-25+13=0[/tex]
[tex](x+2)^2+(y-5)^2-29+13=0[/tex]
[tex](x+2)^2+(y-5)^2-16=0[/tex]
[tex](x+2)^2+(y-5)^2=16[/tex]
Hence the equation of the circle in standard form is [tex](x+2)^2+(y-5)^2=16[/tex]
So, Option C is correct.