A geometric sequence is shown below: a0, -11, 22, a1, 88, -176. A) What is the common ratio for this geometric sequence? a2 B) What are the missing terms in the geometric sequence shown above?

Respuesta :

mergl
176/88=2
22/11=2
Numbers are alternating in negativity, so ratio is (-2)
-11/-2=a0=5.5
88/-2=a1=-44

Answer:

Part A) common ratio = (-2)

Part B). [tex]a_{0}=\frac{11}{2}[/tex]

[tex]a_{1}=(-44)[/tex]

Step-by-step explanation:

The given geometric sequence is [tex]a_{0}, -11, 22, a_{1}, 88, -176[/tex]

A). We have to find the common ratio of the given sequence

Common ratio = [tex]\frac{22}{(-11)}=(-2)[/tex]

B). In this part we have to find the missing terms

Since explicit formula of geometric sequence is

[tex]T_{n}=a(r)^{n-1}[/tex]

So [tex]T_{2}=a_{0}(r)^{2-1}[/tex]

-11 = [tex]a_{0}(-2)^{2-1}=a_{0}(-2)[/tex]

[tex]a_{0}=\frac{-11}{-2}= \frac{11}{2}[/tex]

Now [tex]a_{1}=(\frac{11}{2})(-2)^{4-1}=\frac{11}{2}(-2)^{3}[/tex]

[tex]a_{1}= \frac{11}{2}(-8)[/tex]

[tex]a_{1}=(11).(-4)=(-44)[/tex]

Answer will be [tex]a_{1}=(-44)[/tex] and [tex]a_{0}=\frac{11}{2}[/tex].

Q&A Education