Respuesta :
A.
remember when you multiply or divide by a negative with inequalities, flip the direction of the sign
-vp+40<65
minus 40 both sides
-vp<25
divide both sides by -p and flip sign
v>-25/p
B.
minus 7w from both sides
-3r=15-7w
divide both sides by -3
r=(15-7w)/(-3)
r=(15/-3)+(-7w/-3)
r=-5+(7w)/3
remember when you multiply or divide by a negative with inequalities, flip the direction of the sign
-vp+40<65
minus 40 both sides
-vp<25
divide both sides by -p and flip sign
v>-25/p
B.
minus 7w from both sides
-3r=15-7w
divide both sides by -3
r=(15-7w)/(-3)
r=(15/-3)+(-7w/-3)
r=-5+(7w)/3
Answer:
Solve for v, [tex]v>-\dfrac{25}{p}[/tex]
Solve for r, [tex]r=\dfrac{7}{3}w-5[/tex]
Step-by-step explanation:
Part A:
Given: [tex]-vp+40<65[/tex]
We need to solve for v. We have to isolate v.
[tex]-vp+40<65[/tex]
Subtract 40 both sides
[tex]-vp<65-40[/tex]
[tex]-vp<25[/tex]
Divide by -p both sides and change the sign of inequality ( because if we divide by negative number inequality change)
[tex]v>-\dfrac{25}{p}[/tex]
Part B:
Given: [tex]7w-3r=15[/tex]
We need to solve for r. We have to isolate r.
[tex]7w-3r=15[/tex]
Subtract 7w both sides
[tex]-3r=15-7w[/tex]
Divide by both sides -3
[tex]r=\dfrac{15-7w}{-3}[/tex]
[tex]r=\dfrac{7}{3}w-5[/tex]