Part A: Solve –vp + 40 < 65 for v. Show your work. (4 points) Part B: Solve 7w – 3r = 15 for r. Show your work. (6 points)

Respuesta :

A.

remember when you multiply or divide by a negative with inequalities, flip the direction of the sign
-vp+40<65
minus 40 both sides
-vp<25
divide both sides by -p and flip sign
v>-25/p






B.
minus 7w from both sides
-3r=15-7w
divide both sides by -3
r=(15-7w)/(-3)
r=(15/-3)+(-7w/-3)
r=-5+(7w)/3

Answer:

Solve for v, [tex]v>-\dfrac{25}{p}[/tex]

Solve for r, [tex]r=\dfrac{7}{3}w-5[/tex]

Step-by-step explanation:

Part A:

Given: [tex]-vp+40<65[/tex]

We need to solve for v. We have to isolate v.

[tex]-vp+40<65[/tex]

Subtract 40 both sides

[tex]-vp<65-40[/tex]

[tex]-vp<25[/tex]

Divide by -p both sides and change the sign of inequality ( because if we divide by negative number inequality change)

[tex]v>-\dfrac{25}{p}[/tex]

Part B:

Given: [tex]7w-3r=15[/tex]

We need to solve for r. We have to isolate r.

[tex]7w-3r=15[/tex]

Subtract 7w both sides

[tex]-3r=15-7w[/tex]

Divide by both sides -3

[tex]r=\dfrac{15-7w}{-3}[/tex]

[tex]r=\dfrac{7}{3}w-5[/tex]

Q&A Education