Find the volume of the triangular prism.
Answer:
The volume of the triangular prism (V) is [tex]66 cm^3[/tex]
Step-by-step explanation:
Given: The length of triangular prism [tex]l[/tex] is 11 cm .
Since in the triangular cross-section we have the base (b) equals to 3 cm and the height (h) equals to 4 cm.
Using Volume of triangular prism formula: - A triangular prism whose length is l units, and whose triangular cross section has base b units and height h units,
then, Volume(V) of the triangular prism is given by;
[tex]V=\frac{1}{2} bhl[/tex] cubic unit
Using the values of [tex]l=11 cm[/tex], [tex]b=3 cm[/tex] and [tex]h =4 cm[/tex] we have,
[tex]V=\frac{1}{2}bhl= \frac{1}{2}\cdot 3 \cdot 4 \cdot 11[/tex]
On simplify we get;
[tex]V=3\cdot 2 \cdot 11[/tex] cubic cm
⇒ [tex]V=66 cm^3[/tex]
Therefore, the volume of the triangular prism is 66 cubic cm