Respuesta :
you can see this as.... you go to the bank, deposit your salary and they give you annually 3% in interest
how much will it be in 16 years?
[tex]\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right] \\\\[/tex]
[tex]\bf \begin{cases} A= \begin{array}{llll} \textit{original amount}\\ \textit{already compounded} \end{array} \begin{array}{llll} \end{array}\\ pymnt=\textit{periodic payments}\to &40,000\\ r=rate\to 3\%\to \frac{3}{100}\to &0.03\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\to &1\\ t=years\to &16 \end{cases} \\\\\\ A=40000\left[ \cfrac{\left( 1+\frac{0.03}{1} \right)^{1\cdot 16}-1}{\frac{0.03}{1}} \right][/tex]
how much will it be in 16 years?
[tex]\bf \qquad \qquad \textit{Future Value of an ordinary annuity} \\\\ A=pymnt\left[ \cfrac{\left( 1+\frac{r}{n} \right)^{nt}-1}{\frac{r}{n}} \right] \\\\[/tex]
[tex]\bf \begin{cases} A= \begin{array}{llll} \textit{original amount}\\ \textit{already compounded} \end{array} \begin{array}{llll} \end{array}\\ pymnt=\textit{periodic payments}\to &40,000\\ r=rate\to 3\%\to \frac{3}{100}\to &0.03\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{annually, thus once} \end{array}\to &1\\ t=years\to &16 \end{cases} \\\\\\ A=40000\left[ \cfrac{\left( 1+\frac{0.03}{1} \right)^{1\cdot 16}-1}{\frac{0.03}{1}} \right][/tex]