Respuesta :
Answer:
The correct option is D.
Step-by-step explanation:
Given information:
Length of the poster = [tex]\frac{9}{2}[/tex] ft
Area of the poster = [tex]\frac{45}{4}[/tex] ft²
We need to find the width of the poster.
The area of a rectangular poster is
[tex]A=l\times w[/tex]
where, l is length and w is width.
Substitute [tex]A=\frac{45}{4}[/tex] and [tex]l=\frac{9}{2}[/tex] in the above formula.
[tex]\frac{45}{4}=\frac{9}{2} \times w[/tex]
[tex]\frac{45}{4}=\frac{9w}{2}[/tex]
On cross multiplication we get
[tex]45\times 2=9w\times 4[/tex]
[tex]90=36w[/tex]
Divide both sides by 36.
[tex]\frac{90}{36}=w[/tex]
Cancel out common factors.
[tex]\frac{5}{2}=w[/tex]
The width of the poster is 5/2 ft.
Therefore the correct option is D.