Respuesta :

[tex]C(6,6)=\dbinom66=\dfrac{6!}{6!(6-6)!}=\dfrac1{0!}=\dfrac11=1[/tex]

Answer:

Option (c) is correct.

C(6, 6) = 1

Step-by-step explanation:

   Given : C(6, 6)

We have to evaluate the  value of C(6, 6) and choose the correct from the given options.

Consider the given C(6, 6)

Since, [tex]^nC_r[/tex] gives the number of subsets of r elements out of n elements. and is given by

[tex]nCr=\frac{n!}{r!\left(n-r\right)!}[/tex]

Here, n = r = 6

[tex]=\frac{6!}{6!\left(6-6\right)!}[/tex]

Simplify, we have,

[tex]=\frac{6!}{6!\left(0\right)!}=1[/tex]

Thus, C(6, 6) = 1

Q&A Education