Respuesta :
[tex]C(6,6)=\dbinom66=\dfrac{6!}{6!(6-6)!}=\dfrac1{0!}=\dfrac11=1[/tex]
Answer:
Option (c) is correct.
C(6, 6) = 1
Step-by-step explanation:
Given : C(6, 6)
We have to evaluate the value of C(6, 6) and choose the correct from the given options.
Consider the given C(6, 6)
Since, [tex]^nC_r[/tex] gives the number of subsets of r elements out of n elements. and is given by
[tex]nCr=\frac{n!}{r!\left(n-r\right)!}[/tex]
Here, n = r = 6
[tex]=\frac{6!}{6!\left(6-6\right)!}[/tex]
Simplify, we have,
[tex]=\frac{6!}{6!\left(0\right)!}=1[/tex]
Thus, C(6, 6) = 1