Respuesta :
Knowing 2 of the angles, you can find angle A.
180-11-75=94.
You now know angle A is 94°
You can now use the law of sines to solve.
600/sin11°=a/sin94°
Side a is 3136.85
180-11-75=94.
You now know angle A is 94°
You can now use the law of sines to solve.
600/sin11°=a/sin94°
Side a is 3136.85
Answer:
[tex]a=3,136.85\ units[/tex]
Step-by-step explanation:
Step 1
Find the measure of angle A
we know that
The measure of the internal angles of a triangle is equal to [tex]180\°[/tex]
so
m∠A=[tex]180\°-11\°-75\°[/tex]
m∠A=[tex]94\°[/tex]
Step 2
Find the measure of side a
Applying the law of sines
[tex]\frac{b}{sin(B)}=\frac{a}{sin(A)}[/tex]
we have
[tex]b=600\ units, B=11\°, A=94\°[/tex]
substitute
[tex]\frac{600}{sin(11\°)}=\frac{a}{sin(94\°)}[/tex]
[tex]a=600*sin(94\°)/sin(11\°)[/tex]
[tex]a=3,136.85\ units[/tex]